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Abstract
This paper sets out the algebra involved in solving the G-Cubed class of macroeconomic models,
without allowing for optimal policy. Policy responses are instead captured by exogenously determined
policy response functions. It provides the line-by-line algebraic details needed to implement the two-
point boundary solution algorithm described in McKibbin (1987) that builds on the work of Blanchard
and Kahn (1980).
1 The non-linear model

The model can be expressed in terms of the following variables:
e the vector of state variables, S;
e the vector of costate or “jump” variables, Ji;

e the vector, R;, the subset of endogenous variables that also enter the model in expectations, at
time, ¢ of their value in time t 4+ 1, Ey(Ryy1);

e the vector of other endogenous variables, Z;; and
e the vector of exogenous variables, X;.

In non-linear form, these equations can be written:
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2 The linear model as a series of differential equations

The model is linearised using a first-order Taylor-series expansion around a point P:

P - (S’t-i-l) St? Et(jt+1)7 jt7 Rt; Et(Rt-‘rl), ZtaXt)

In most cases, P is defined as values for the variables in the year prior to the start of model projections.

Adjustments are made to the values selected for variables that are a long way from their equilibrium
values, for example, when real interest rates are negative, those negative interest rates will not be used
as part of the point around which the model is linearised.

Calculating numerical derivatives at the linearisation point, the model can be approximated by a set
of linear differential equations. For A in (S, J, R, Z), define ¢4, as the matrix of partial derivatives of

function ® 4() with respect to its nth argument.

To improve readability, define the following notation in time-period :

(5) dS; = st
dJy = ji
dR; = ¢
dZy = z
dX; = x4

Et(rt+1) = tTt+1

Ei(jev1) = tde+1

The linear model is then the following differential equations.
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St41 = Ps15t41 + Ps2 tJi+1 + PsaTt + Psaze + Ps5 ¢7141 + Ps65t + Ps7it + PssTe
tJt+1 = Qj1St4+1 + Qi thi+1 + Gjare + Qjaze + Gjs 4Tir1 + Pjest + Girie + Pz
Tt = Qr1St41 + Gr2 tJer1 + PraTe + Graze + Grs ¢Ter1 + GreSt + Grrie + PrTy
2t = Q218141 + P22 tJt41 + P37t + Paa2t + G5 tTe41 + G265t + P27t + Py

[0

~ ~ ~~
=) ~J
— o —

3 The State-Space Form

The State-Space Form (SSF) is obtained by eliminating s;41, tji+1, 7t, and z; from the right-hand side
of the linear model.

Working through the necessary steps, first rearrange equation 9 to gather all z; terms on the left:

(10) (I. — ¢2a)2t = P215t41 + P22 theg1 + P23t + Gus 1741 + G265t + i + Puse

Multiplying through by the inverse of (I, — ¢.4) and defining the « coefficient matrices appropriately, we
obtain:

(11) 2 = Q218441 + Q22 ¢Je41 + Q237 + Qs 4741 + QS + Q7] + 08Ty



Use equation 11, to substitute z; out of equations 6, 7, and 8, again defining a coefficient matrices
appropriately:

(12) St41 = Qs18441 + Qs2 ¢Je41 + Qs3Tt + Qg5 ¢T141 + Qs6St + Qs7]t + Qs Ty
(13) tJe+1 = Q1841 + Q2 ¢Jir1 + 3T + Qs Ter1 + QS + Q7 + sy
(14) Tt = Qp1Sp1 + Q2 ¢Jir1 + O3ty + Qps ¢ Tep1 + QpeSe + Qe + gy

Repeat the process to eliminate r; from the right of the linear model, rearranging equation 14:

(15) (Ir — 03)Te = Qp18e41 + 02 tJi41 + Qraze + Qs 17441 + Q6 St + Qp7js + gy

Multiply through by the inverse of (I, — a,3), to solve for r;, defining the § coefficient matrices appro-
priately.

(16) Tt = Br1St+1 + Bro2 tJi+1 + Brs ¢Te41 + Brese + Brrie + Braty

Use equation 16, to substitute r; out of equations 12, 13, and 11, defining the S coefficient matrices
appropriately.

(17) Se41 = Bs1Si+1 + B2 tie+1 + Bos tTi41 + BseSt + Bsri + BssTy
(18) tJi41 = Bi1ser1 + B2 tde+1 + Bis tTev1 + Bjese + Birie + sy
(19) 2 = Ba18t41 + Ba2 thir1 + Bas w1 + BaeSt + Barde + Basy

Repeat the process to eliminate ;j;4+1 from the right of the linear model, rearranging equation 18:

(20) (Ij = Bj2) tjt+1 = Bjises1 + Bis ¢7ew1 + Biest + Bzt + Bjsty

Multiply through by the inverse of (I; — 3;j2) to solve for ji;1, defining the « coefficient matrices appro-
priately.



(21) tJt41 = Vj1St+1 T Vj5 tTe41 + VjeSt—1 + Vj7Jt + V8Tt

Use equation 21 to substitute ¢j:4+1 out of equations 12, 14, and 11, defining the v coefficient matrices
appropriately:

(22) St41 = Vs1St41 + Vs5 tTt41 + V65t + VsrJt + Vst
(23) Tt = Yr18t41 + Vr5 ¢Te41 + Vr6St + Verde + Vs
(24) 2t = V218641 T Ve5 tTe41 + V265t T VarJe T V28Tt

Repeat the process to eliminate s;11 from the right of the linear model, rearranging equation 22:

(25) (Is — Ys1)St4+1 = Vo5 tTt+1 + Vs65t + Vs7jt + Vs8Tt



Multiply through by the inverse of (I — vs1), to solve for s;y1, defining the  coefficient matrices appro-
priately.

(26) St41 = Osr ¢Tt41 + 0555t + 05t + Osaly

Use equation 26 to substitute s; 11 out of equations 21, 23, and 24, defining the § coefficient matrices
appropriately. Note that the § coefficient matrices are referenced throughout the rest of this document.
Their subscripts indicate the vectors that they relate, with the first subscript indicating the vector on the
left of the equation and the second subscript indicating the vector on the right of the equation. Thus, d;
is the matrix of SSF coefficients describing the relationship between s;;1 on the left and j; on the right.

(27) tJt+1 = Ojr ¢7e41 + 0558t + 055 Jt + Ojuy
(28) Ty = 67“’[‘ tTt4+1 + 57"831‘, + 6rjjt + 5rmxt
(29) 2t = Ozp tTt41 + 0255t + 0257t + 020t

Equations 26, 27, 28, and 29 constitute the SSF.

4 The stable manifold

The stable manifold is the non-exploding path for the costate variables, j;. It is found using the iterative
algorithm described in McKibbin (1987).

4.1 The first iteration to find the stable manifold

The model needs to be solved for paths for all variables from period t = 0 to period t = T'. Use a suitable
terminal condition to start the iterative process of computing the transition rule for the costate variable
that implies model consistent expectations.

With (linearised) model-consistent expectations, we can slightly simplify notation again, replacing ;741
and ¢j;11with 7441 and ji41 respectively because the model has no sources of uncertainty.

The first iteration yields rules for jr, rr in terms of s and zp. These rules must be model consistent
with remaining periods. Being the final period, T, a terminal condition is required.

An intuitive terminal condition involves the period-to-period change in the variables being zero from
period T to period T'+ 1 so jpr = jry1 and rp = rpyq. This enables elimination of r; and j; from the

period T' SSF equations.

First eliminate rp1q1 = rp from the right of equation 28.

(30) (Ir = 8pp) 11 = OpsST + OrjiT + Opa®T



Multiply through by Ty = (I, — 6,) .

(31) rT = 1l)rssT + '(/}'r‘jjT + wrmxT

The coefficient matrices in equation 31 are defined as follows.

(32) wrs = F’I”T(S’I"S
(33) wrj = FTT(ST]'
(34) wrw = F7‘2’167‘93

Using the terminal condition again, rp41 = rp substitute equation 31 for rp41 in equation 27.

(35) Jr+1 = 5j7" ('(/)TSST + wrjjT + ¢rmxT)
+djssT + 05501 + djexT

Given the terminal condition implies jriy1 = jr, collect jr terms on the left.

(36) (Ij = 855 = 8j0r)dr = Gjr (Yrss5T + Yror)

+ 0557 + Sjar

Multiply through by I';7 = (I; — ;5 — 5jr¢rj)_1 to obtain a rule for jr in terms of s and x7.

(37) Jjr = Hirst + Harxr

The coefficient matrices in equation 37 are defined as follows.

(38) HlT = 1—‘jT (6jr’(/}rs + 6]5)
(39) H2T = FjT (5j7‘wrz + 5]0:)

Replace jry1 = jr in equation 31 with equation 37.

(40) rr = YrsST + i (Hirst + Horxr) + Yraxr

Collecting terms, this can be expressed as a rule for 71 in terms of the state and exogenous variables in
period T

(41) rp = Myrst + Morxr

The coefficient matrices in equation 41 are defined as follows.

(42) Mir = YrsT + Y Hir
(43) Mot = Yror + Vi Hor



4.2 Further iterations for the stable manifold

Next, derive for the rule for period ¢ assuming a specific form of the rule in period ¢+ 1 that includes the
rules described in equations 37 and 41 as special cases for the terminal period. This iterative process,
continues until the rule is far enough before the terminal period T that the coefficient matrices in the
rule for the costate variable do not change with each iteration.

The rules for any time period ¢ from ¢ = 0 to ¢ = T involve linear functions of future exogenous variables.
For brevity, define these functions as follows:

(44) Fji = fit(xp41,- .- 27)
(45) oy = frt(l't+1a-~-,xT)
(46) Fy = fst(xt—&-la s 7$T)

If the rules for period ¢ have the same form as the rules for period ¢+ 1, a process of induction, back from
period T, implies the rules for all time periods from period 0 through to period 7" and allows calculation
of the coefficient matrices in those rules.

The assumed rules for period ¢ + 1 are set out below.

(47) Jto1 = Higq1 sep1 + Hopyr T + Fleg
(48) Tep1 = Migp1 Sep1 + Morr1 o1 + Frea

We need to check that the assumed rules in equations 47 and 48 imply the rules for j; and r; in equations
49 and 50.

(49) Jt = Hiy s¢ + Hog x¢ + Fyy
(50) e = My 8¢ + Moy 24 + Fiy

Along with the SSF, the rules in equations 47 and 48 imply a rule for s;y1. To show this implication, use
the SSF equation for the state variables, equation 26, substituting ;41 with the assumed rule for ry; in
equation 48.

(51) St41 = Osr (Muyg18141 + Mopy1@i41 + Friq1) + 0555t + 0555t + Os e

Gather all s;11 terms on the left.

(52) (Is = Osp M1t41) St41 = 055t + 05 Jt + Osa®t + Ogr (Morp12e41 + Frig1)

Multiply through by T's; = (I — 5er1t+1)_1 to obtain the rule for s;q1.

(53) St4+1 = TsstSt + Tsjtjt + TsatZt + Fst

The coefficient matrices in equation 53 are defined as follows.

(54) Tost = L'st Oss
(55) Tsjt = R 6sj
(56) Tsxt = Fst 651’



The linear function of future exogenous variables is defined as follows:

(57) Fo = Tsdr (Marp12e41 + Frig1)

Using the three rules in equations 47, 48, and 53, obtain the coefficient matrices in the rules for j;, r;
and s;. Begin by equating the right-hand-sides of the assumed j;;1 rule, equation 47, and the SSF for
Jt+1, equation 27.

(58) Hitp18e41 + Horp1@eq1 + Fliegr = 071 + 65sS¢ + 0555t + 0502t

Substitute ry41 with the assumed rule for r;;; in equation 48.

(59) Hyp 18641 + Hoypp1@pq1 + Fje
= 0jp (M1st18i41 + Morp1@iq1 + Friq1) + 0j58¢ + 055t + 0524

Gather s¢41 terms.

(60) (Hitr1 = 0jr Mugi) se1 + Hopp17e41 + Fle
= 0;sSt + 050t + 0ot + 0jp (Mapp12e41 + Friqr)

Use the rule for sy in equation 53 to eliminate sy41.

(61) (Hipq1 — 05 Mipgr) (Tosese + Tojede + Towr®e + For) + Hop1 241 + Fjep
=055t + 051 + 0jus + O (Morp12i41 + Frign)

Rearrange to have only terms involving j; on the left and gather like terms on the right.

(62) (055 — (Higg1 — 65 Muyq1) Toje) Je
= ((Hit41 — 0jrMit41) Tsst — Ojs) St
+ (Hit41 — 0jp Mip1) Towt — 0j) T
+ Horp1@e41 + Fjep1 + (Higpr — 050 Migg1) Fst — 0jr (Moyp1@e41 + Freg)

Multiply through by I';z = (0;; — (Hit41 — 00 Mit41) Tsjt)71 to obtain the rule for j; in equation 49.

The implied coefficient matrix definitions are:

(63) Hyp =Ty (Higp1r — 6jrMigi1) Tsst — 0js)
(64) Hop = Tyt (Hipe1 — 6jr Migi1) Tswt — )

The implied function of future exogenous variables in the rule for j; is:

(65) Fjit =Tt (Hopp12e41 + Fipgr + (Hiep1r — 0jp Magg1) Fop — 0jp (Mopy12441 + Freqr))



Next derive the rule for r; in equation 50.

To derive the rule for r¢, replace ryy1 with the assumed rule for 7,11 in the SSF equation for r;, equation
28.

(66) Ty = Opp (Mugp18e41 + Morp12e41 + Friq1) + 0rsSt + Orjfit + 0ray

Substitute for s;; with the rule in equation 53.

(67) Ty = Opp (Mug1 (Tost St + Tojtdt + Tswi @t + Fsi) + Morp12e41 + Frigp1) + 0rsSe + Opjie + OraTy
Gather like terms on the right.
(68) Ty = (6rs + 6rrM1t+1Tsst) St

+ (6T’j + 5rert+17—sjt)jt

+ (57“1 + 5rert+17—smt) Tt

+ 6pp (Mry1Fst + Moyp12i41 + Friga)

Replace j; with its rule in equation 49 to obtain the required form for the rule for r;.

(69) Tt = (67"3 + 6rert+1Tsst) St
+ (05 + Opr Mut417sjt) (Hiest + Hopwy + Fjp)
+ (57"z + 6rert+1Tsrt) T
+ 0pp (Myyg1 Fop + Moy 1241 + Frygn)
Gathering like terms on the right produces the rule for r; in equation 50 as required.
(70) Ty = (67‘5 + 6T7‘M1t+17-88t + (67‘j + 6rrM1t+1Tsjt) Hlt) St
(67”1 + 6r7‘M1t+17—szt + (57’j + 5rert+17_sjt) HQt) Tt

+ 6pr (Mitg1Fst + Morp1xip1 + Frogr) + (005 + 0pr Mavg17sjt) F

The implied coefficient matrix definitions are:

(71) My =05 + 5rert+1 (Tsst + Tsthlt) + 6TjH1t
(72) M2t = 67‘:13 + 6T7‘M1t+1 (Tsxt + TsthZt) + 67‘jH2t

The implied function of future exogenous variables in the rule for s; is:

(73) Frt = 0pr (Mips1 Fst + Mopi1@eq1 + Frogr) + (05 + 6pr Muyp17s5e) Flit



This result confirms that the rules for r, and j;, have the form specified in 50 and 49 assuming the form
for the rules for r41 1 and j;41 in equations 47 and 48. Given that the rules for jr and rp are special cases
of the form specified in equations 47 and 48, we have proved that the rules have the form in equations
50 and 49, for all time periods ¢t = 0 through to t = T.

We have also derived the relationship between the coefficient matrices in the rules for all time periods
and have derived the rules for the state variables in all time periods and the relationship between the
coefficient matrices in those rules and the coefficient matrices in the SSF and the rules for j and r.

4.2.1 A rule for ;r;;; in terms of s;

A rule for 4r441 = 7441 in terms of s; and exogenous variables is helpful when generating model projections.
It also underpins an alternative way of deriving the rule for r; in terms of s; and exogenous variables.

To obtain the rule expressing r;y1 in terms of s; and exogenous variables, replace s;11 in equation 48
with the right side of equation 53.

(74) Tip1 = M1 (TsseSe + Tojede + TowtTe + Fop) + Moppr o1 + Frog

Eliminate j; using equation 49.

(75) reg1 = Musp1 (TostSt + Toje (Hie 8¢ + Hop @4 + Fjt) + Tome @t + Fst) + Mor1 @1 + Frega

Collect like terms on the right.

(76) Tip1 = M1 (Tsse + TsjeHie) 5t
+ M1 (Towr + TojeHot) ¢
+ Mip1 (Fop + 7oj1Fjt) + Mogy12e41 + Froqa

Define the following coefficient matrices.

(77) pie = Mg (Tost + TsjeHre)
(78) por = Mipy1 (Tswe + TojeHat)

Define the following function of time ¢ and future exogenous variables.

(79) Gri = M1 (For + 75t Fji) + Moy p1@i41 + Frega

Using these definitions, we can express a the rule for .1 in terms of s; and x; and future exogenous
variables.

(80) Tip1 = 1St + pory + Gy

10



The rule for r; then obtains by eliminating ;711 and j; from the SSF equation for 7, equation 28, using
and use equations equation 80 and 49 respectively.

(81) Ty = Opp (145t + 2t @e + Gri) + 0rsSt + 0rj (H1eSt + Hopy + Fjt) + Srpy

Collect like terms on the right to obtain the required rule for ;.

(82) Ty = (6rs + ar’rﬂlt + 6TjHlt) St + (6rw + 6T7‘,U/2t + 6er2t) Tt + 5rrGrt + 6erjt

The implied coefficient matrix definitions are:

(83) Mlt = (57’5 + 57’7",”4” + 5er1t)
(84) M2t - (6717 + 67‘7'M2t + 67'jH2t)

It can be shown that these definitions are equivalent to the definitions in equations 71 and 72.

The implied function of future exogenous variables in the rule for s; is:

(85) Fi= 5rrGrt + 67‘ijt

This definition is also equivalent to that in equation 73.

4.3 Convergence of the stable manifold

Convergence is deemed to have happened when the matrices, Hi¢, Ho:, My and Mo, stabilise to be
independent of the time period, Hy, Ho, M7 and Ms.

As shown by Blanchard and Kahn (1980), the stable manifold is only unique if matriz? has exactly one
eigenvalue outside the unit circle for each costate variable in the model. Otherwise the solution is not
unique. It would be helpful to be explicit about how the linearised model in this paper maps to the linear
model in la of Blanchard and Kahn (1980) so that we can determine how to assess uniqueness based on
the J matrix (J is from the Jordan canonical form of the full linear model coefficient matrix) eigenvalues
when we form the linear model.

What can we say about whether convergence is guaranteed? Is there a connection between uniqueness and
a guarantee of convergence?

4.4 State dynamics and system stability

To check that the stable manifold does imply stability of the system, check the eigenvalues of the matrix
in the rule relating the state in period ¢t 4+ 1 to the state in period ¢, obtained after substituting the rules
j¢+ and 1441 back into the SSF equation for the state variables. All of those eigenvalues must lie inside
the unit circle if the system is stable.

To implement this stability test and to obtain a rule for the state dynamics, it is useful to write the rule
for the state variables as a function of state variables in the previous period and exogenous variables.

11



To do so, substitute the rule for j;, equation 49, and the rule for 41, equation 80, into the SSF equation
for the state variables, equation 26 where ¢ is a sufficient number of periods before T for the rules to be
expressed in terms of Hy, Ho, M7 and M.

(86) St+1 = 657" (,U/ltst + M2t Tt + Grt) + 65351‘/ + 63]' (Hlst + H2xt + th) + 6smxt

Collect like terms on the right.

(87) St+1 = (558 + 557‘,“115 + 5st1) St + (65:1: + 557"M2t + 5st2) Tt + 6errt + 5stjt

Define the following coefficient matrices, N1 and Ns.

(88) N1 = A (055 + 05;H1)
(89) No = A (855 + 65 H2)

Define the function of future exogenous variables G g;:

(90) Gt = A (0sr (Mazpy1 + Frogr) + 055 Fjt)

The state transition equation can then be written as:

(91) St41 = Nisp + Noxy + Go

The matrix to consider when assessing stability is V1, the state transition matrix. Stability requires all
eigenvalues of this matrix to be inside the unit circle.
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